如何防止我的模型过拟合?这篇文章给出了6大必备方法
编辑:小舟 正如巴菲特所言:「近似的正确好过精确的错误。」 在机器学习中,过拟合(overfitting)会使模型的预测性能变差,通常发生在模型过于复杂的情况下,如参数过多等。本文对过拟合及其解决方法进行了归纳阐述。 在机器学习中,如果模型过于专注于特定的训练数据而错过了要点,那么该模型就被认为是过拟合。该模型提供的答案和正确答案相距甚远,即准确率降低。这类模型将无关数据中的噪声视为信号,对准确率
过拟合
机器之心 . 2021-01-20 910
- 1