来源:内容转载自公众号「 老石谈芯 」,谢谢。
目前,全世界超过90%的数据都是在过去的两三年之内产生的。随着人工智能、自动驾驶、5G、云计算等各种技术的不断发展,海量数据都将会继续源源不断的产生。 预计到2025年,数据总量将比现在增长10倍 。在这些技术的发展中,很大的一部分都基于对大数据的研究和分析。正因为如此,很多人就形象的将数据比喻为人工智能时代的石油。
为了对海量的数据进行处理,基于传统CPU的计算结构已经很难满足需求了,我们需要更加强大的硬件和芯片,来更快、更好的完成这些工作。
此外,我们也需要更好的方法,比如使用各种人工智能的算法和模型,来帮助我们进行数据的分析和处理,并得到有意义的结论。如果把这两者结合起来,就产生了各种各样的人工智能芯片。
在这篇文章里,我们来一起看一下关于人工智能芯片的几个有意思的事情。我想讨论的重点, 是在实际的工程实践和应用场景里,如何对人工智能加速芯片进行合理的评价和选择,以及各种不同的AI芯片的优缺点都有哪些 。我会给大家介绍一个简单的思维框架,帮助大家理解和思考。
责任编辑:Sophie
全部评论