一文知道决策树的优缺点

来源: 产品经理的AI知识库 作者:产品经理的AI知识 2020-08-27 09:50:00

  决策树的优点

  1、决策树易于理解和解释,可以可视化分析,容易提取出规则;

  2、可以同时处理标称型和数值型数据;

  3、比较适合处理有缺失属性的样本;

  4、能够处理不相关的特征;

  5、测试数据集时,运行速度比较快;

  6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。

  决策树的缺点

  1、容易发生过拟合(随机森林可以很大程度上减少过拟合);

  2、容易忽略数据集中属性的相互关联;

  3、对于那些各类别样本数量不一致的数据,在决策树中,进行属性划分时,不同的判定准则会带来不同的属性选择倾向;信息增益准则对可取数目较多的属性有所偏好(典型代表ID3算法),而增益率准则(CART)则对可取数目较少的属性有所偏好,但CART进行属性划分时候不再简单地直接利用增益率尽心划分,而是采用一种启发式规则)(只要是使用了信息增益,都有这个缺点,如RF)。

  4、ID3算法计算信息增益时结果偏向数值比较多的特征。

专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0