MOSFET Pass Element Yields 100

来源: 转载 作者:佚名 2009-04-30 09:19:00
In terms of low RON, the best pass transistor for a low-dropout, posi TIve-voltage regulator is an N-channel MOSFET. All such commercially available regulators, however, use bipolar PNP pass transistors. The PNP transistor can saturate completely in these applica TIons because the base voltage is lower than the output voltage, producing a collector-emitter voltage of less than 0.4V. For comparison, the corresponding drop across an NPN pass transistor is greater than VBE(SAT) (1.2V minimum) because regulator circuits generally provide no base-drive voltage higher than the input (VCC).

N-channel MOSFETs provide the lowest VDROP = IOUT × RON, but the required VGS drive varies with output current and ranges 3 to 4 volts above the output voltage. In Figure 1, the circuit provides this drive voltage by employing a voltage converter chip (IC1) that uses charge-pump techniques to boost a 5V input to 10V. The 10V output then drives a posi TIve-voltage regulator (IC2), which in turn drives the N-channel, Logic-level MOSFET Q1. The gate drive available to Q1 remains high (10V) because the low supply current into IC2 (10µA) produces a small IR drop through IC1 (approximately 1.5mV), which enables IC1's output to remain nearly twice the value of VCC.

During the opera TIon at 500mA, the dropout voltage—the minimum value of VCC - VOUT that sustains regulation—is only 100mV. The quiescent current is only 1mA, thanks to the CMOS technology of IC1 and IC2. Resistor R3 prevents the MOSFET gate from floating when the regulator is OFF, and the feedback resistors R1 and R2 set the regulator's output voltage VOUT:



IC2 also incorporates a low-battery detector whose output (LOB) goes low when the detector's input voltage (connected LBI) goes below 1.3V. As shown, the circuit detects VCC overvoltage. LBO remains low for normal-range VCC levels and goes high when VCC exceeds it's upper limit (6.3V in this case). IC2 shuts down when LBO pulls the SHDN input high, thereby preventing excessive dissipation in the pass transistor by removing it's gate drive. R7 protects IC1 by restricting it's current flow.

You can also use the detector to sense complete saturation in Q1 (the condition in which VCC is less than VOUT plus 100mV). Connect SHDN to ground. (Or, you can turn the output off and on by driving SHDN with a CMOS gate.) Set the R5–R6 divider to produce 1.3V when VCC = VOUT + 100mV, and then monitor LBO for the low (fault) condition.



专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0