• 你们知道在超厚铜的信号层走高速线是怎样一种体验吗

      按正常的思维逻辑来说,高速信号的走线层一般都是0.5oz或者1oz,如果让你亲眼见到一个高速信号走到厚铜上,你会不会很惊(jing)喜(ya)!   高速信号为什么一般都会走在0.5oz的信号层上呢?抛开性能的要求不说,从加工的角度来看,0.5oz的层对于走线蚀刻,PP的流胶都会相对比较稳定,而且对于设计来说,走线和走线之间的距离要求也不会过于严格,这样的话一般来说加工出来的阻抗就会比较稳定,

    连接器

    高速先生 . 2021-12-08 1 3 2835

  • 博士生DIY超级显微镜,可看到原子!网友:一下省出几十万元

      扫描隧道显微镜(STM),乍一听或许会觉得陌生。   但它在科学界的地位可不一般——让人类能够观察到单原子表面层的局域结构图像,是纳米科技领域中重要的一个工具,还赢得了诺贝尔奖。   仪器之精密,就不用多说了。   而来自加拿大麦吉尔大学的一位博士生小哥Berard,在家便自制了一台STM,而且还成功“拍”下了石墨碳原子的图像!   价格方面,专业的STM售价在3万美元至15万美元不等,但这位

    显微镜

    量子位 . 2021-04-15 812

  • 量子显微镜帮助第一次真正看到光被纳米材料捕获时的动态

      量子领域重大突破!量子显微镜可观察纳米材料捕光过程;“这是我们第一次真正看到光被纳米材料捕获时的动态,而不是依靠计算机模拟。”   今年 6 月,一篇题为 “Coherent interaction between free electrons and a photonic cavity”《自由电子与光子腔之间的相干相互作用》的论文发表在 Nature 上,该文第一作者王康鹏(Kangpeng

    量子

    DeepTech深科技 . 2020-11-21 1055

  • AFM悬臂已被用作物理和化学测量中的传感器

    1986年发明原子力显微镜(AFM)时,就产生了商业需求。原子力显微镜(AFM)使用尖端非常尖的探针(末端只有几纳米厚)连接到精确灵敏的悬臂和传感器上。由于纳米力学领域的重大进步,使得这些悬臂的制造成为可能。 原子力显微镜的应用 这种精密仪器的引入很快导致它们在更广泛的应用中使用。例如,AFM悬臂已被用作物理和化学测量中的传感器,将力转换为电能以实现高度灵敏的传感器功能。在这种意义上,它们被称为纳

    传感器

    贤集网 . 2020-10-28 995

  • 盲人福音! Rice大学最新研发出一种扁平化的显微镜,可帮助恢复视力

    也许大家都熟悉那种让医生直接通过手术修复眼睛和耳朵来恢复视力或听力的方式,不过最近Rice大学发现了一种更好更直接的方式,那就是直接将信息传递给大脑。 目前Rice大学正在开发一种扁平化的显微镜,名字叫做FlatScope。它可以在我们的大脑中监视和触发被修改的神经元,并且在活动之后被激活。它不仅可以捕捉到比现有大脑探测器更多的神经元活动细节(研究小组希望能够看到百万单位的神经元),而且还能深入到

    芯片

    YXQ . 2019-03-21 1000

  • 北京大学发明新型三光子显微镜,实现深层活体三维脑成像的研究

      北京大学信息科学技术学院、区域光纤通信网与新型光通信系统国家重点实验室王爱民副教授课题组与分子医学研究所陈良怡教授课题组合作发明了一种基于贝赛尔光束的新型三光子显微镜(Bessel-Beam three-photon microscopy)。此显微镜成功实现针对稀疏标记的样本进行快速深层活体三维脑成像的研究。利用光学成像技术在活体上观察组织和细胞内的动态过程,是研究生物医学问题的关键手段之一。

    通信系统

    未知 . 2018-08-28 905