引 言
直接序列扩频通信是扩频通信技术中的一种, 具有抗干扰、抗多径衰落、抗阻塞能力强, 以及频谱利用率高、保密性好、截获率低、易于组网、进行高精度测距等诸多优点。
本文提出了一种基于软件无线电的直扩系统的设计方案。给出了各项设计参数指标, 并对所提出的设计方案进行了仿真 验证。
1 系统基本结构
基于软件无线电的直扩通信终端采用对中频进行数字化采样, 由软件编程实现信号的扩频、调制、解扩、解调等数字信号处理。本文重点介绍直扩通信终端的中频数字处理的具体实现方案。直扩通信终端的结构框图如图1 所示。
信号发射时, 信息经过信源、信道编码后, 与扩频伪码进行相乘扩频。为了使扩频后的基带信号与后面的DAC 的转换速率相匹配, 在正交调制之前必须通过内插把低速率的扩频基带信号提升到DAC 的转换速率上。内插后的数据通过成形滤波器, 以消除码间干扰和高频镜像干扰, 内插滤波后的扩频基带信号与载波相乘实现数字调制, 之后通过高速DAC 转换成中频模拟信号。
信号接收时, 中频模拟信号经过高速ADC 采样后, 与本地载波相乘进行正交下变频至零中频, 经抽取滤波后, 送入伪码同步环进行伪码捕获跟踪。伪码同步后, 再经过信号解扩解调以及相应的信道和信源解码。
图1 直扩通信终端结构框图
2 系统参数设计
直扩通信终端参数约束主要有如下几个方面:
( 1) 信息数据的传输速率: 由于该直扩通信终端主要用于低速率数据通信以及语音通信, 而且目前语音编码( 如CELP、AMBE 编码) 后的数据速率一般为2! 4 Kb/ s, 4 Kb/ s, 4! 8 Kb/ s, 8 Kb/ s, 9! 6 Kb/ s。因而在信息速率的选择上设定信息速率为8 Kb/ s, 信道编码采用码率为1/ 2 的卷积编码。因此待扩频的数据速率为16 Kb/ s。
( 2) 扩频伪码类型以及阶数: 由于所设计直扩通信终端目前完成的是点对点的通信, 因而为了简便起见,在直扩通信终端中采用m 序列作为扩频伪码。若m 序列的长度太长, 则不仅增长了接收机的捕获时间还增加了接收机结构的复杂性。若m 序列长度太短, 则中频数字化直扩通信终端的抗干扰能力减弱。因而采用折中方式, 采用11 阶的m 序列作为中频数字化直扩通信终端的扩频伪码。
( 3) 扩频处理增益: 扩频增益是直扩通信的一个重要参数, 反映了系统抗干扰能力的强弱, 是对信噪比改善程度的度量, 其定义为接收机输出信噪功率比与接收机的输入信噪功率比之比, 即:
其中: B RF 为扩频后的带宽; Bb 为基带数据带宽; Rc 为扩频后的伪码速率; Rb 为基带数据速率。在本设计中,为了提高频带利用率, 考虑到所允许的最大带宽, 这里设计伪码的速率为4. 096 Mb/ s。因而, 可以得到中频数字化直扩通信终端的处理增益为24 dB。
( 4) 数字调制方式和中频载频: 由于DPSK 信号采用带判决反馈结构的叉积鉴频环不仅可以消除频偏, 而且还可以进行差分解调, 从而不需要载波的相位同步, 简化了接收机的电路设计。因而采用DPSK 作为中频数字化直扩通信终端的数字调制方式。
在中频载频的选择上, 采用21.4 MHz为中频数字化直扩通信终端的中频载频。
( 5) 伪码同步电路: 对于伪码捕获电路框架, 采用非相干串行捕获法。其中的积分清洗滤波器可用累加器或者匹配滤波器来代替。由于直扩通信终端采用先解扩后解调, 在解扩之前无法得到精确的载波相位和载频, 因此伪码跟踪电路采用非相干超前延时锁相环。
全部评论