微小的电荷泵提供高可靠的低成本解决方案,以负参考电压-Tin

来源: 本站整理 作者:佚名 2009-05-04 10:15:00
Addi TIonal Informa TIon:
  • Quick View Data Sheet for the MAX828/MAX829
  • Technical Support: Power
In telecom applica TIons, par TIcularly the rectifier applications (or front-end power supplies), a negative reference voltage is needed for primary-side control circuitry (op amps) to increase common-mode noise immunity. The value is about 2V to 3V without regulation. Power consumption of the negative voltage is negligible. A simple way to realize such a negative reference voltage is by using a three-diode voltage drop (see Figure 1).


Figure 1. A typical discrete approach to generate negative reference voltage.

This circuit, at first glance, appears to be a simple and cheap solution. However, in practice, it is not inexpensive for the following reasons: (1) The diodes D2 to D4 must have the same current rating as D1. This is because these diodes carry the same current as D1, even though the current sourced by -Ref is negligible. (2) Because of large-ripple current passes through D2, D3, and D4, the voltage across the three diodes is not constant; therefore, a large value of the capacitor (C3, around 47µF) is needed to filter out the ripple voltage. To have smoother negative reference voltage (less than 300mV ripple), another filter (R1 and C4) is required. (3) Particularly when the cooling fan is powered from the primary side, extra power dissipation in the three diodes causes a thermal problem on these diodes at high ambient temperatures. In addition, these components occupy more space and increase manufacture cost. Therefore, a simple and space-saving solution is needed for reduced power dissipation to increase bias-supply reliability.

Figure 2 shows a simple solution that uses Maxim's space-saving and highly efficient charge-pump product, the MAX828/829. The MAX828 is designed for 0°C to +75°C and the MAX829 for -40°C to +85°C.


Figure 2. -Ref circuit employing the MAX828/829 charge-pump IC.

Note that R1 and R2 are resistor dividers in case the primary bias voltage is more than 5.5V. C3 is the filtering capacitor. If the primary-side bias voltage is less than 5.5V, these components can be omitted. Advantages of such implementation for negative reference voltage are as follows: (1) Space saving. As -Ref sources only a few mini ample currents, the capacitors, C3, C4, and C5 can be 0603 in size and the resistors R1 and R2 can be 0804 in size. The MAX828/829 come in a tiny SOT23-5 package. (2) High reliability. This is because power dissipation in the negative reference circuit is very small. (3) -Ref is not temperature-dependent anymore. In previous implementations, the diode voltage drop was a function of both the temperature and the load current.

An Example: For a -5V/2mA negative reference voltage from +12V primary bias, R1 = 1k, R2 = 910Ω, C3 = C4 = C5 = 0.022µF/16V (0603). At 2mA output current, the efficiency is about 90% (from the data sheet).


专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0