混合电路驱动器的类型和数量的LED-Circuit Driv

来源: 本站整理 作者:佚名 2009-04-27 10:04:00
Portable systems often use LEDs of different colors-white for the display backlight, green for keypad illumina TIon, red for power, etc., and in varying quan TI TIes of each. Typically the LEDs are driven by at least two power supplies, one for "standard" LEDs (red and green) and one for white LEDs (white LEDs require a higher forward voltage.) The keypad and other indicator LEDs each have current-limi TIng resistors.

The circuit in Figure 1 drives the LED strings via transistors Q1-Q4, which operate as current mirrors. This technique offers the following advantages:
  • eliminates the current-limiting resistors
  • drives groups of dissimilar LEDs
  • requires just one power supply voltage
  • allows each string to operate at a different current
  • and allows the brightness of all the LEDs to be adjusted with one control point (U1's ADJ pin).

Figure 1. In this LED-drive circuit, a switching converter (U1) and associated components let you mix LED quantities and types.

Transistors Q2-Q4 mirror the current in diode-connected transistor Q1. Note that the Q1 current-set string (LEDs D3-D5) should have an equal or larger voltage than that of subsequent LED strings. (If it doesn't, the current-mirrored strings may not have enough voltage overhead to function properly.) You can easily meet that requirement in the first string, by placing either LEDs with larger forward voltage drops (such as the approximate 2.8V to 3.7V range of white LEDs), or a greater number of similar LEDs. Then, the subsequent strings with lower voltage burdens can be easily accommodated.

The matched-transistor current mirrors maintain a constant and equal current in all LEDs, regardless of quantity and type. That configuration allows the use of a single power supply and a single point for adjusting LED brightness.

Any power difference between the reference string and a mirrored string is dissipated in the current-mirror transistor for that string: Pmax (transistor) = (VOUT - 300mV - VLEDs) × ILEDMAX. The current-sense resistor value is R2 = 300mV/ILEDMAX, where ILEDMAX is the sum of currents from all the strings. (For a comprehensive circuit and parts list, refer to Maxim's MAX1698 EVKit data sheet.)

When driving the same LEDs without the current mirror one can reduce power dissipation in the sense resistor and ballast resistors by substituting a micro-power op amp across the current-sense resistor (Figure 2). That circuit improves efficiency by reducing the resistor values and their associated loss. Gaining up the current-sense signal by approximately 16 allows an equivalent reduction in the value of R2 and the ballast resistors.


Figure 2. Modifying Figure 1 as shown reduces the overall power dissipation in a standard application.

A typical value for R2 is 15Ω, which represents a loss of 18mW (i.e., 20mA2 × 15Ω for each of three resistors). If R2 = R5 = R6 = 0.931Ω, then the resistor power loss drops to 1.12mW. The op amp draws only 20µA maximum, which is a dissipation of 100µW.

A similar version of this article appeared in the October 3, 2002 issue of EDN magazine.


专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0