图文详解:深度学习的学习任务

来源: 百家号 作者: 程序员陌然 2020-07-01 09:35:00

一、典型的学习任务包括:

分类(classification)

回归(regression)

聚类(clustering)

排序(ranking)

密度估计(density estimation)

特征降维(dimensionality reduction)

… …

1.1分类(classification)

基于已知类别标签的样本构成的训练集,学习预测模型;最终预测模型,对新的观测样本,预测相应的输出;预测结果为事先指定的两个或多个类别中的某一个,或预测结果来自数目有限的离散值之一。

两类别 vs.多类别

类别数C=2, 两类别分类(binary classification)

类别数C》2, 多类别分类(multiclass classification)

3.2回归(regression)

回归分析基于已知答案的样本构成的训练集,估计自变量与因变量之间关系的统计过程,进而基于该关系对新的观测产生的输出进行预测,预测输出为连续的实数值

3.3 聚类(clustering)

对给定的数据集进行划分,得到若干“簇”;使得“簇内”样本之间较“簇间”样本之间更为相似。通过聚类得到的可能各簇对应一些潜在的概念结构,聚类是自动为给定的样本赋予标记的过程。

聚类举例

1.4特征降维

将初始的数据高维表示转化为关于样本的低维表示,借助由高维输入空间向低维空间的映射,来简化输入。

– 特征提取,如PCA–高维数据的低维可视化

专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0