用机器学习来预测材料淬火无序现象

来源: 未知 作者:胡薇 2018-06-29 14:50:00

淬火无序现象,是人们对各种材料(如FCC和BCC晶体、无定形固体)和地震地质断层突发塑性事件或材料爆裂噪声事件进行观察而得到认识的。爆裂噪声可由随机-场模型或界面定位模型加以解释,涉及均匀固体的弹性、局域淬火无序,以及微观状态空间允许的不均匀和随机分布。

然而局域淬火无序却一直难以测量。美国西弗吉尼亚大学的Stefanos Papanikolaou教授采用无监督机器学习方法并结合聚类算法,以期从具有爆裂噪声随时间演化行为的应力-应变曲线中获得淬火、局域的无序分布。该方法在两种爆裂噪声模型中能成功实现数据的聚类和分类,并从镍微柱单轴压缩实验的数据中成功得到了淬火无序的分布。

这是典型的时间局域可观察参量(如突发事件大小/持续时间)途径所无法企及的。作者将这一方法记作时间序列-机器学习法。若将这些淬火无序分布的识别及分类扩展到不同材料、加载模式和样品加载历史中,将有助于建立随机屈服分布的数据库,进而改进多尺度力学模型。

 

专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0