谷歌发布新版AlphaGo,对弈自我学习,已击败柯洁系统

来源: 网络整理 2017-10-19 17:57:00

 

谷歌旗下人工智能研究部门DeepMind发布了新版AlphaGo软件,它可以完全靠自己学习围棋。

这款名为AlphaGo Zero的系统可以通过自我对弈进行学习,它利用了一种名为强化学习的技术。在不断训练的过程中,这套系统开始靠自己的能力学会围棋中的一些高级概念。

经过3天的训练后,这套系统已经可以击败AlphaGo Lee,也就是去年击败韩国顶尖棋手李世石的那套系统,而且比分高达100比0。经过40天训练后,它总计运行了大约2900万次自我对弈,使得AlphaGo Zero得以击败AlphaGo Master(今年早些时候击败世界冠军柯洁的系统),比分为89比11。

结果表明,具体到不同技术的效果,人工智能在这一领域仍有很多学习的空间。AlphaGo Master使用了很多与AlphaGo Zero相同的开发技术,但它需要首先利用人类的数据进行训练,随后才切换成自我对弈。

值得注意的是,虽然AlphaGo Zero在几周的训练期间学会了一些关键概念,但该系统学习的方法与人类有所不同。另外,AlphaGo Zero也比前几代系统更加节能,AlphaGo Lee需要使用几台机器和48个谷歌TPU机器学习加速芯片。其上一代AlphaGo Fan则要用到176个GPU芯片。AlphaGo Zero只需要使用一台配有4个TPU的机器即可。

专题

查看更多
IC品牌故事

IC 品牌故事 | 三次易主,安世半导体的跨国迁徙

IC 品牌故事 | 开放合作+特色深耕,华虹的突围之路

IC 品牌故事 | Wolfspeed:从LED到SiC,被中国厂商围追堵截的巨头

人形机器人

市场 | 全球首家机器人6S店在深圳龙岗开业

方案 | Allegro解决方案助力机器人应用提升效率、可靠性和创新

方案 | 爱仕特SiC三电平方案:突破工商储能PCS高效极限

毫米波雷达

毫米波雷达 | 智能驾驶不可或缺的4D毫米波雷达技术全解析

毫米波雷达 | 有哪些热门毫米波雷达芯片和解决方案?

毫米波雷达 | 超百亿美元的毫米波雷达都用在了哪里?

0
收藏
0